
Leak kernel pointer
by exploiting uninitialized uses

in Linux kernel

Jinbum Park
jinb-park.github.io

jinb.park7@gmail.com

Background

Uninitialized use vulnerability

Uninitialized use => Information leak Uninitialized use => Pointer dereference

Uninitialized use vulnerability

No problem?

a(10)

Padding (-)

b(20)

c(30)

Padding (-)

sizeof(o) == 24 byte!!

leak due to padding!!

Prior works
1. UniSan (ACM CCS 2016)

- Bug finding : O
- Exploitation : X

2. Unleashing Use-Before-Initialization Vulnerabilities in the Linux kernel Using
Targeted Stack Spraying (NDSS 2017)
- Bug finding : X
- Exploitation : Pointer dereference from stack
- Note : Not dealing with Information Leak

3. Exploitations of Uninitialized Uses on macOS Sierra (USENIX WOOT 2017)
- Bug finding : X
- Exploitation : Information Leak from heap, Pointer dereference from stack
- Note : Dependent on specific vulnerability. Not dealing with Information Leak from stack.

No comprehensive research on
exploitations of uninitialized use for Information Leak!!

Uninitialized use CVEs (Information Leak)

- We investigated Uninitialized use CVEs in Linux kernel reported from 2015 to 2018.
- Investigated 22 CVEs manually.
- A lot of vulnerabilities have been fixed upstream, but not assigned as CVEs.

- Where does it occurs from which memory type?
-- Stack : 17 CVEs (77.3%) / Heap : 5 CVEs (22.7%)

- Leak size (CVEs from Stack)
-- Less than 8byte : 10 CVEs (58.8%) / Greater than 8byte : 7 CVEs (41.2%)

- Leak size (CVEs from Heap)
-- Less than 8byte : 0 CVEs (0%) / Greater than 8byte : 5 CVEs (100%)

Type of kernel pointer we’re interested in

- We define sensitive kernel pointer as follows.
- Pointer to kernel code. (bypass KASLR)
- Pointer to kernel stack. (contains a lot of sensitive data, thread_info)
- Pointer to kernel object.

Goal

- Defines common exploitation steps which is not dependent on specific
vulnerability.

- Defines common challenges for successful exploitation.

- Presents generic methods and tools for solving the challenges.

- Exploits real-world vulnerabilities with the methods and tools.

Exploitation steps

Sample Vul - Uninitialized use from stack

- Copy “obj” including not initialized o.c to user space.
- Then, 8 bytes arbitrary kernel stack memory leak happens.
- Problem?? Since the leaked data is random data, Attacker can’t utilize the data.

a 10

b 20

c ??? random kernel data

Kernel stack

What should we do

- Put “Sensitive kernel pointer” on the memory “o.c”
 prior to trigger vulnerability.

a 10

b 20

c Sensitive kernel pointer

Kernel stack

Exploitation steps

1. Calculate offset of leaked memory “o.c” from base address. => Leak offset
2. Put sensitive kernel pointer on the Leak offset. (Attacker already knows the type of the kernel pointer.)
3. Trigger vulnerability.
4. See the kernel pointer.

Challenges

Challenges

1. Calculate offset of leaked memory “o.c” from base address.
2. Put sensitive kernel pointer on the Leak offset. (Attacker already knows the type of the kernel pointer.)
3. Trigger vulnerability.
4. See the kernel pointer.

1. How to calculate the leak offset? (C-1)
2. How to put sensitive kernel pointer on the leak offset? (C-2)
3. What If leak size is less than 8 bytes? (C-3)

 ** When sensitive kernel pointer has been overwritten unintentionally. (Failed to solve)

Exploitation Techniques

Assumption & Environment (Confirmed on Ubuntu)

Exploit

Same Linux kernel version in both Attacker Device and Victim Device

Run as an user.
Local Exploit.
Leak Kernel Pointer!

Attacker Device Victim Device

Attacker can gain kernel privilege. Privilege of Attacker is user.

Analyzing the vulnerability &
Making exploit code.

Exploit

C-1. How to caclulate leak offset?

Footprinting kernel stack - Concept

1. Footprinting kernel stack with distance from base

C-1. How to calculate the leak offset? ---> C-2 ---> C-3

???

???

???

???

???

???

Kernel Stack

High

Low

Leak Offset

0x01

0x02

0x03

0x04

0x05

0x06

2. Trigger the vulnerability

Attacker
3. See the footprint.

 Calculate the leak offset based on the footprint.

Footprinting kernel stack - Implementation

C-1. How to calculate the leak offset? ---> C-2 ---> C-3

Attacker KptrLib

KptrModule
Vulnerable
Code

Footprinting kernel stack

Footprinting kernel stackTrigger vulnerability

Footprinting

Leak footprint

Get leak offset with footprint

Return leak offset

Attacker Process

User

Kernel

C-2. How to put sensitive kernel pointer
 on the Leak Offset?

Approach-1. Kernel pointer spraying (KptrSpray)

C-1 ---> C-2. How to put sensitive kernel pointer on the leak offset? ---> C-3

- Fill large amount of kernel stack memory with sensitive kernel pointer.
- In hacking community, Spraying generally means that fill memory with the value that attacker knows.

(e.g. fake object address, code address)
- But for leaking kernel pointer, Attacker should fill stack memory with the sensitive kernel pointer that

attacker doesn’t know.
- So this kind of spraying is a special case. We call it Kernel pointer spraying. (KptrSpray)

Approach-1. Kernel pointer spraying (KptrSpray)

C-1 ---> C-2. How to put sensitive kernel pointer on the leak offset? ---> C-3

Sprayer

Attacker
Process

command

??

Kernel pointer

Kernel pointer

Kernel pointer

Kernel pointer

??
Spraying

Kernel
Stack

- Even though an attacker doesn’t know sensitive kernel pointer value, Attacker can spray kernel
stack by exploiting “Sprayer” which is one of kernel subsystem.

- We found the “Sprayer” by manual kernel code analysis. The “Sprayer” we found is eBPF.

Leak offset

User

Kernel

Approach-1. Kernel pointer spraying (KptrSpray)

C-1 ---> C-2. How to put sensitive kernel pointer on the leak offset? ---> C-3

What is eBPF?

User

Kernel

Socket
(Src)

eBPF
Program

eBPF
Program

Socket
(Dest)

Packet

Binding

- eBPF has their own ISA. (Instruction Set Architecture)
- eBPF has functionality for Interpreting, JIT compile.
- eBPF allows an user to do flexible packet analysis.

….. (can do more things!)

Approach-1. Kernel pointer spraying (KptrSpray)

C-1 ---> C-2. How to put sensitive kernel pointer on the leak offset? ---> C-3

How do we exploit eBPF to do spraying?

User

Kernel

eBPF
Program

struct bpf_insn bpf_prog[] = {
… // BPF_REG_FP is constant. It doesn’t contain real frame pointer value.
BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_FP, 0), // *fp = fp;
…
BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_FP, -512), // *(fp-512) = fp;
}

eBPF
Program

..
BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_FP, 0),
// 1) Interpreting it. ⇒ BPF_STX_MEM(BPF_DW, 0xffff0800123000, 0xffff0800123000, 0)
// 2) Running it ⇒ *(0xffff0800123000) = 0xffff0800123000;
// 3) Repeat until it reaches up to the 512 byte! (limitation value of eBPF)

Approach-2. Kernel pointer fuzzing (KptrFuzz)

C-1 ---> C-2. How to put sensitive kernel pointer on the leak offset? ---> C-3

- Return address, kernel stack address will be stored naturally to random kernel stack memory while
executing a system call. It means that just calling a system call is helpful for solving this challenge.

??

??

??

??

Kernel Stack
before calling system call A

??

Return address

??

Stack address

Kernel Stack
after calling system call A

Pointer to somewhere
kernel code

Pointer to somewhere
kernel stack

Approach-2. Kernel pointer fuzzing (KptrFuzz)

C-1 ---> C-2. How to put sensitive kernel pointer on the leak offset? ---> C-3

After calling
System call A(1)

??

Kernel pointer

??

Kernel pointer

Leak offset

??

??

Kernel pointer

??

After calling
System call B(1)

After calling
System call B(2)

Kernel pointer

??

Kernel pointer

??

- Whatever Leak offset is, We can find the system call to put sensitive kernel pointer on the Leak
offset with high probability due to a lot of combination of system calls.

Approach-2. KptrFuzz - Implementation

C-1 ---> C-2. How to put sensitive kernel pointer on the leak offset? ---> C-3

Magic code

Magic code

Magic code

Magic code

Magic code

Magic code

Kernel pointer

Magic code

1. Fill kernel stack memory with Magic code.

Magic code

Magic code

Kernel pointer

Magic code

Offset : 0x10
Type : Kernel code
Syscall : A
Args : 1

KptrEntry

 2. Run a selected system call with selected arguments.

 3. Inspect kernel stack memory to find where kernel pointer is located.

 4. Recording the context which is called KptrEntry.

Repeat 1~4 on combination
of system call as many as
possible!!

Approach-2. KptrFuzz - Implementation

C-1 ---> C-2. How to put sensitive kernel pointer on the leak offset? ---> C-3

 2. Run a selected system call with selected arguments.

- For this step, Either KptrFuzz use their own fuzzing system or use existing Linux fuzzer.

Fuzzer Kernel Code
Coverage (KC)

Kernel Stack
Coverage (KS)

Total
(KC U KS)

TinySysFuzz 58 % 65 % 75 %

Linux Test Project
(LTP)

78 % 80 % 81 %

KptrFuzz coverage
- Coverage on 8-byte aligned memory
- Inspection from stack base to 1,260 byte far. (90% of syscall use under 1260 byte)
- Tested on Ubuntu 4.8.0-58-generic kernel

C-3. What if leak size is less than 8 bytes?

Approach-1. Do some operation on unknown bytes

C-1 ---> C-2 ---> C-3. What If leak size is less than 8 bytes?

??

??

0xffffff0412340000

??

Leak offset

??

??

0xffffff0412340000

??

Do some operation

??

??

0xffffff0312340000

??

Known bytes are changed!
By using this change,
Infer unknown bytes reversely.

Assumption
- Attacker can do some operation on unknown bytes.

Approach-1. Do some operation on unknown bytes

C-1 ---> C-2 ---> C-3. What If leak size is less than 8 bytes?

Attacker doesn’t know anything.0xffffff0412340000

0xffffff0412340000 Trigger leak!

0xffffff0312340000
Do sub operation! And Trigger leak again!
- 0xffffff0412340000 – 0x0000000012360000
- Attacker knows the unknown bytes is less than 0x12360000

0xffffff0412340000 Do sub operation! And Trigger leak again!
- 0xffffff0412340000 – 0x0000000012300000
- Attacker knows the unknown bytes is greater than 0x12300000
- Attacker knows the unknown bytes is, 0x12300000 ~ 0x12360000.

Repeat until get correct answer!

Approach-2. KptrFuzz on N-byte aligned memory

C-1 ---> C-2 ---> C-3. What If leak size is less than 8 bytes?

??

??

0xffffff0412340000

??

Leak offset

??

??

0x12340000ffffff08

0x12380000ffffff04

- In the case that Leak size is 4, We can run KptrFuzz multilple times to get full 8-byte kernel pointer.

1. KptrFuzz on 8byte aligned memory leaks high 4byte of kernel pointer.
2. KptrFuzz on 4byte aligned memory leaks remaining low 4byte of kernel pointer.

Kernel pointer on 8byte aligned memory Kernel pointer on 4byte aligned memory

Leak offset

Approach-2. KptrFuzz on N-byte aligned memory

C-1 ---> C-2 ---> C-3. What If leak size is less than 8 bytes?

- Unfortunately, KptrEntry which is aligned smaller than 8-byte memory is not exist in kernel stack.
So… Even if this approach is possible theoretically, but couldn’t applied to real-world Linux kernel.

Fuzzer Coverage (8-byte aligned) Coverage (4-byte aligned)

TinySysFuzz 75 % 0 %

Linux Test Project
(LTP)

81 % 0 %

KptrFuzz coverage

** When sensitive kernel pointer has been
overwritten unintentionally. (Failed to solve)

In-depth of CVE-2016-5244
Vulnerability

It has 7 fields.
But, It only initializes 6 fields.
minfo.flags will be uninitialized.

Leak to user-space

In-depth of CVE-2016-5244
Problem

getsockopt()
(system call entry)

Dummy functions..
rds_inc_info_copy
(has vulnerability)

Control Flow Path from system-call-entry to vulnerability

??

??

Kernel Pointer

??

??

??

0

??

??

??

0 (leaked!!)

??

Exploitations on real-world vulnerabilities

Exploitations on real-world vulnerabilities

- C-1 : How to calculate leak offset?
- C-2 : How to put sensitive kernel pointer on the leak offset?
- C-3 : What if leak size is less than 8 bytes?
- [1] https://www.exploit-db.com/exploits/46006
- [2] https://www.exploit-db.com/exploits/46208
- [3]] https://github.com/torvalds/linux/commit/7c8a61d9ee

CVE Leak size C-1 C-2 C-3 Result Code

CVE-2016-4486 4 byte Footprinting KptrSpray Do some
operation...

8 byte pointer to kernel stack [1]

CVE-2018-11508 4 byte Footprinting KptrFuzz - 4 byte pointer to kernel code
(enough to bypass KASLR)

[2]

CVE-2016-4569 4 byte Footprinting KptrFuzz - 4 byte pointer to kernel code -

Not assigned [3] 4 byte Footprinting KptrFuzz - 4 byte pointer to kernel code -

https://www.exploit-db.com/exploits/46006
https://www.exploit-db.com/exploits/46006
https://github.com/torvalds/linux/commit/7c8a61d9ee

Demo-1

- Exploiting CVE-2018-11508
- Using Footprinting, KptrFuzz
- Goal : Bypassing KASLR
- Leak Size : 4 bytes

Demo-2

- Exploiting CVE-2016-4486
- Using KptrSpray, Do some operation…
- Goal : Get 8-byte kernel stack address
- Leak Size : 4 bytes

Exploiting CVE-2016-4486
One More Problem Here!

Kernel Pointers
(by KptrSpray)

Random Value Leak Offset

Kernel Stack
High Address

Low Address

KptrSpray couldn’t clobber value at Leak Offset since
its coverage limitation…

KptrFuzz also couldn’t find a system call to put kernel
pointer onto the Leak Offset...

What should we do?

Exploiting CVE-2016-4486
Possible Solution

Kernel Pointers
(by KptrSpray)

Random Value Leak Offset

Kernel Stack
High Address

Low Address

Either
- Moving KptrSpray zone downward to clobber
Leak Offset.
- Or Moving LeakOffset up to the KptrSpray zone.

Why is it possible??

- Stack Address is not absolute address. It’s
depending on the control flow path.

- If we try all possible control flow paths to
trigger KptrSpray or Vulnerability, we could
find a case to solve this challenge!

Exploiting CVE-2016-4486

KptrSpray with sendmsg()

Kernel Pointers
(by KptrSpray)

Random Value Leak Offset

Kernel Stack
High Address

Low Address

Kernel Pointers
(by KptrSpray)

Leak Offset

Kernel Stack
High Address

Low Address

KptrSpray with compat_sendmsg()

Moved!!

Demo-2

- Exploiting CVE-2016-4486
- Using KptrSpray, Do some operation…
- Goal : Get 8-byte kernel stack address
- Leak Size : 4 bytes

Mitigations

Runtime prevention

1. STACKLEAK

- Implemented as GCC Plugin.

- From grsecurity/PaX team.

- Integrated into Linux kernel upstream since 2018.09 (v4.20 - latest!!)

- Not default option of Linux kernel.

- Zeroing out stack when syscall returns, The zeroing eliminates all sensitive

information inside stack, So that attacker can’t get anything through

exploitation.

Bug finding (Static method)

1. UniSan

- From georgia tech as an academic paper. (ACM CCS 2016)

- Presents Static analysis tool for finding information leak caused by

uninitialized use from both Stack and Heap.

- https://github.com/sslab-gatech/unisan (OpenSource)

https://github.com/sslab-gatech/unisan

Bug finding (Dynamic method)

1. KMSAN (Kernel Memory Sanitizer)

- From google as one of memory sanitizer project.

- Detector of uninitialized use for the Linux kernel. (currently in development)

- Presents runtime detection using both Syzkaller and KMSAN-applied kernel.

- :- 24-hours running on Syzbot.

Thank you!

Q & A

